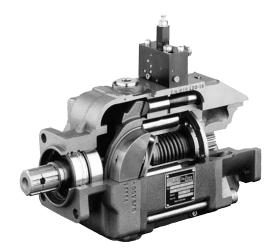
ше

Axial piston variable displacement pump type V60N, Serie 03


mainly for mobile applications, commercial trucks etc. Open circuit

Nominal pressure = 350 bar (5075 psi)Maximum pressure p_{max} = 400 bar (5800 psi)

Geometric displacement $V_{max} = 60, 90 \text{ or } 110 \text{ cm}^3/\text{rev}$ (3.7, 5.5 or 6.7 cu in)

Symbol

1. General information

This variable displacement pump with its rugged construction is designed for direct mounting at the auxiliary drive (P.T.O.) of commercial vehicles and for standard mounting via a SAE-flange.

With a max. displacement of 110 cm³/rev and a peak pressure of 400 bar it is suited for many applications. This is complemented by the high self priming rate and the low noise level.

Long service life is ensured due to the pressurized lubrication of the swash plate bearing shell.

These features can be best employed when the variable displacement pump is combined with the directional spool valves type PSV according to D 7700 ++ and the corresponding over-center valves type LHT and LHDV according to D 7918 and D 7770.

Reversing the rotation direction is very simple and can be done in the field, which helps to adapt the pump to existing applications.

HYDRAULIK

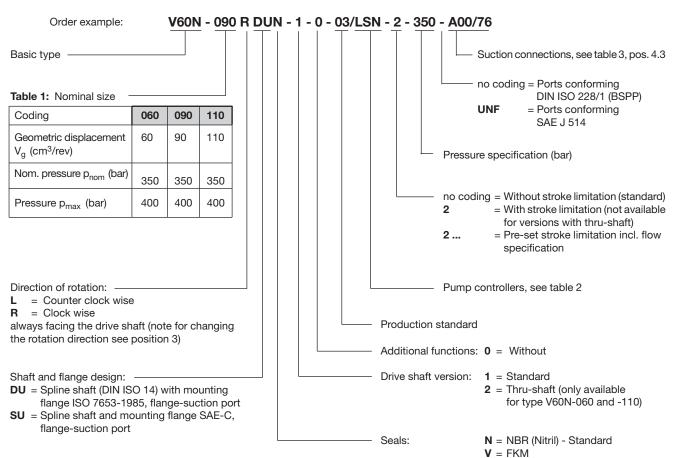
HAWE HYDRAULIK SE STREITFELDSTR. 25 • 81673 MÜNCHEN **D 7960 N**Axial piston variable displacement pump

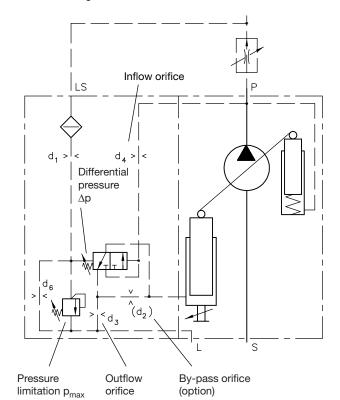
© 2001 by HAWE Hydraulik

February 2007-02

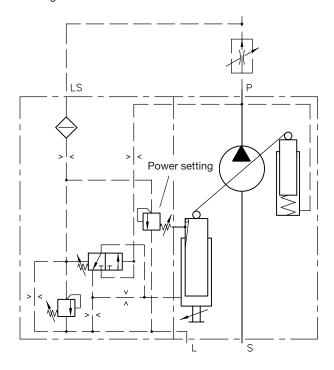
2. Available versions, main data

2.1 Basic pump

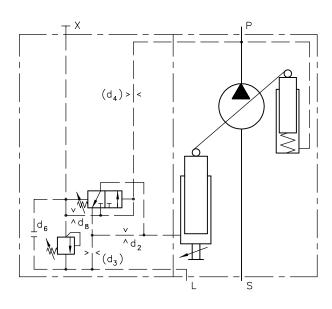


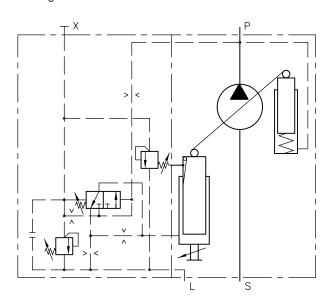

Table 2: Pump controllers

Coding	Description
LSN	Load-Sensing controller with integrated pressure limitation
N	Pressure controller, adjustable directly at the pump. The Pressure controller automatically maintains a constant system pressure independant of the required flow. Therefore it is suited for constant pressure systems, where differing flow is required or as efficient pressure limitation of the hydraulic system.
LLSN	Power controller (torque limitation) in combination with LSN Product "Pressure x Displacement" = constant Adjustment range: 25100% of max. drive torque
LN	Power controller (torque limitation) in combination with pressure controller N Adjustment range: 25100% of max. drive torque


2.2 Controller

Symbols


Coding LSN


Coding **LLSN**

Coding ${\bf N}$

Coding **LN**

Fitted orifices (standard)

Controller	$\emptyset d_1$	$\varnothing d_2$	$\varnothing d_3$	$\emptyset d_4$	$\varnothing d_6$	Ød ₈
LSN LLSN	0.9	-	0.7	1.2	2x0.4	-
N LN	-	0.7	-	-	-	0.7

3. Additional parameter

3.1 General

Calculation of the nom. sizes:

Installed position

Hydraulic fluid

Flow rate

 $Q = \frac{V_g \cdot n \cdot \eta_v}{1000} \text{ (I/min)}$

Torque

 $M = \frac{1,59 \cdot V_g \cdot \Delta p}{100 \cdot \eta_{mh}} \text{ (Nm)}$

Power

 $P = \frac{2\pi \cdot M \cdot n}{60\,000} = \frac{M \cdot n}{9549} = \frac{Q \cdot \Delta p}{600 \cdot \eta_t} \ (kW)$

V_g = Displacement (cm³/rev)

 Δp = Differential pressure (bar)

 $\begin{array}{ll} \eta_v &= \mbox{ Volumetric efficiency} \\ \eta_{mh} &= \mbox{ Mechanical-hydraulic efficiency} \end{array}$

n = Speed (rpm)

 η_t = Total efficiency ($\eta_t = \eta_v \times \eta_{mh}$)

Nomenclature Axial piston pump according to the swash plate principle

Mounting At the auxiliary drive of commercial vehicles (flange ISO 7653-1985 for trucks) or flange

assembly (flange SAE-C)

Surface nitro-carb hardened

Direction of rotation Clock wise or counter clock wise

Changing the rotation direction Turn the end plate (see dimensions, pos. 4) and change the port plate, see also B 7960 N

 V60N-060
 V60N-090
 V60N-110

 Order No.:
 Port plate
 clock wise
 79-40846.00
 79-40518.00
 79-29763.00

 counter clock wise
 79-40847.00
 79-40519.00
 79-29765.00

counter clock wise Any (observe the installation notes!)

Hydraulic oil acc. to DIN 51524 table 2 and 3; ISO VG 10 to 68 acc. to DIN 51519

Viscosity range: min. approx. 10; max. approx. 1000 mm²/sec

Optimal operation range: approx. 10...35 mm²/sec

Also suitable are biologically degradable pressure fluids type HEES (synth. Ester) at operation

temperatures up to approx. +70°C.

Temperature Ambient: approx. -40...+60°C

Fluid: -25...+80°C, pay attention to the viscosity range!

Start temperature down to -40°C is allowable (Pay attention to the viscosity range during start!), as long as the operation temperature during subsequent running is at least 20K (Kelvin) higher.

Filtration Should conform to ISO standard 4406 code 16/13.

Initial operation All pipes should be flushed with the same fluid intended for the later service prior to initial opera-

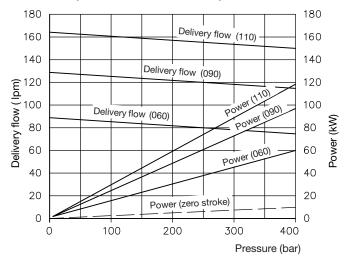
tion. The housing of the pump should be primed via the upper case drain port. The case drain line

must be routed in such a way that running empty is prevented.

The pressure limiting valve should be set to 50 bar or lower for initial operation and the first few

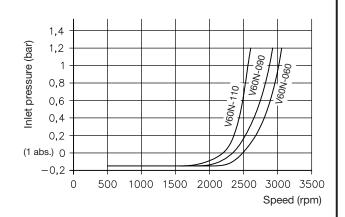
minutes of regular service.

Max. perm. housing pressure 1 b


Approved by DaimlerChrysler AG, auxiliary drive NA 121-2c (only V60N-090)

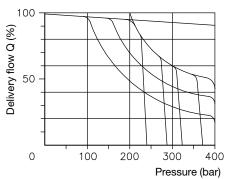
	V60N-060	V60N-090	V60N-110
Angle of the swash plate	21.5°	21.5°	21.5°
Required inlet pressure (absolute) for open circuit	0.85 bar	0.85 bar	0.85 bar
Max. permissible drive torque	430 Nm	530 Nm	600 Nm
Max. permissible torque for the tru-shaft, dep. on flange	100 Nm		600 Nm
Max. rev. rating when self priming and max. angle of the swash plate at 1 bar absolute inlet pressure	2500 rpm	2300 rpm	2200 rpm
Min. rev. rating for permanent running	500 rpm	500 rpm	500 rpm
Required torque at 100 bar	100 Nm	151 Nm	184 Nm
Drive power for 250 bar and 2000 rpm	53 kW	79.5 kW	97.2 kW
Mass (weight) complete with controller	22 kg	25.8 kg	28 kg
Weight torque	30 Nm	35.3 Nm	40 Nm
Inertia moment	0.005 kg m ²	0.008 kg m ²	0.01 kg m ²
Sound level at 250 bar, 1500 rpm and max. swash plate angle (Measured in a sound measuring room DIN ISO 4412, distance 1m)	75 dB(A)	75 dB(A)	75 dB(A)

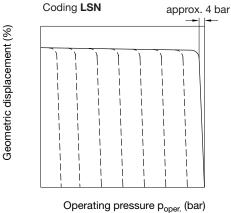
3.2 Curves


Delivery flow and performance

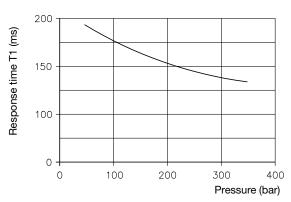
The curves illustrate delivery flow/pressure (without controller). Drive power at max. swash plate angle and drive power at zero stroke at 1500 rpm.

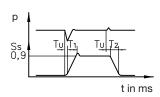
Inlet pressure


The curve was taken at viscosity 75 $\,$ mm $^2/\text{sec}$ and max. swash plate angle


Controller curve

Coding L


Pressure / Delivery flow



Response time T1 (LSN-controller)

Response time T2 (LSN-controller)

 $S_s = Displacement$

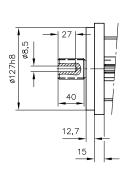
 $T_u = Delay < 3 ms$

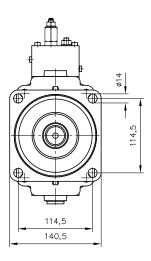
T₁ = Response time min to max

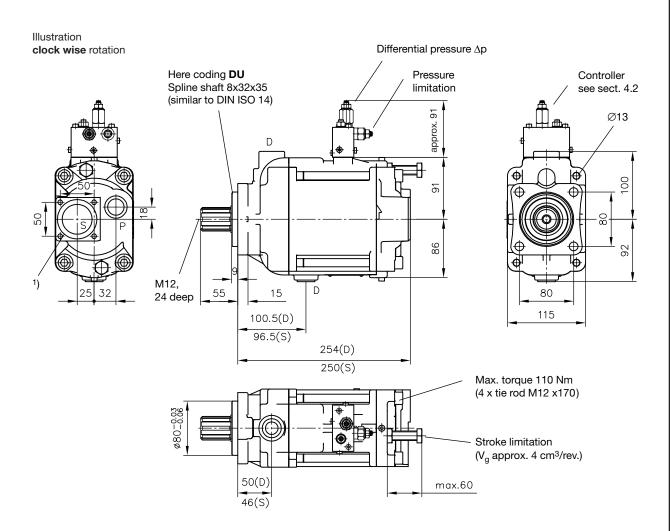
T₂ = Response time max to min

p = Pressure

LS-line min. length 1.5 m, min. internal diameter 12 mm $\,$


4. Unit dimensions


All dimensions in mm, subject to change without notice!


4.1 Basic pumps

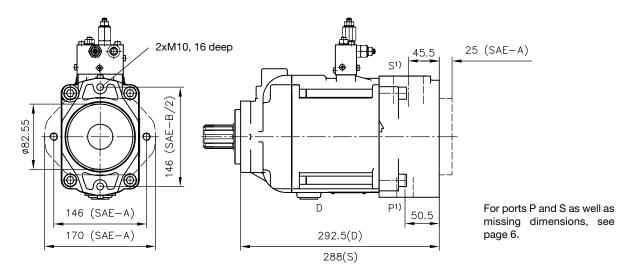
Type V60N-060

Here coding **SU** Spline shaft SAE-C 14T-12/24 DP

- Mounting kit is scope of delivery with the intake acc. to sect. 4.3 (part No. 7993355). It consists of:
 - 4x skt.-head screw M8x16-8.8
 - O-ring 44.2x3 NBR 70 Sh
 - 2 brackets

Ports (DIN ISO 228/1 (BSPP):

P = Pressure outlet G 3/4 S = Flange, suction port D = Case drain G 3/4


Coding **UNF** ports conforming SAE J 514:

P = 1 5/16-12 UN-2B S = Flange, suction port

D = 1 1/16-12 UN-2B

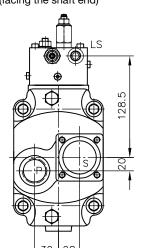
LS = G 1/4 (DIN ISO 228/1 (BSPP)) with adaptor for 7/16-20 (SAE-4)

Version with thru-shaft

Order example: V60N-060 RDUN-2-0-00/LLSN-350-SAE-B/2-A00/76

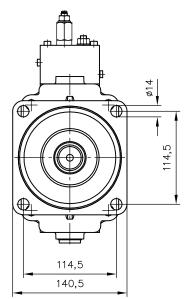
Available flange design including coupling sleeves

Coding	Description	Suited for spline shaft
- SAE-A	Flange SAE-A	9T-16/32 DP
- SAE-B/2	Flange SAE-B-2-hole	13 T-16/32 DP


Note: An additional support has to be provided for pump combinations

1) With clock wise rotation

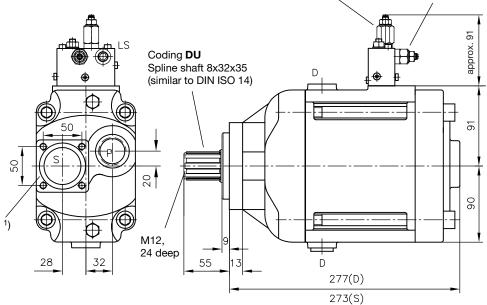
Type V60N-090

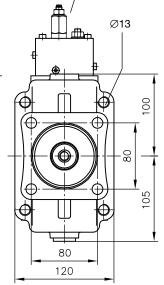

Coding "DU" and "SU"

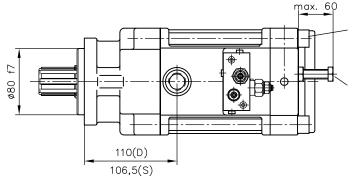
counter clock wise rotation direction (facing the shaft end)

Coding **SU**Spline shaft SAE-C
14T-12/24 DP

Coding "DU" and "SU"


clock wise rotation direction (facing the shaft end)


Differential pressure Δp


Pressure

limitation

Controller see sect. 4.2

Max. torque 150 Nm (4 x tie rod M14 x190)

Stroke limitation (ΔV_g approx. 5 cm³/rev.)

End plate (has to be turned for changing the rotation direction, see note sect. 3 or B 7960 N)

- Mounting kit is scope of delivery with the intake acc.to sect. 4.3 (part No. 7993355). It consists of:
 - 4x skt.-head screw M8x16-8.8
 - O-ring 44.2x3 NBR 70 Sh
 - 2 brackets

Ports DIN ISO 228/1 (BSPP):

P = Pressure outlet G 1

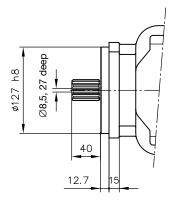
S = Flange, suction port

D = Case drain G 3/4

Coding **UNF**

ports conforming SAE J 514:

P = 1 5/16-12 UN-2B

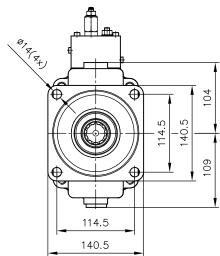
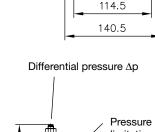

S = Flange, suction port

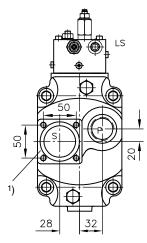
D = 1 1/16-12 UN-2B

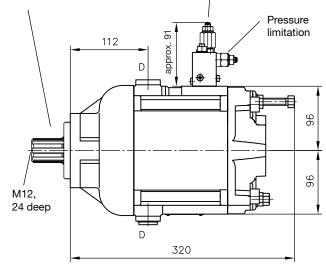
LS = G 1/4 (DIN ISO 228/1(BSPP)) with adaptor for 7/16-20 (SAE-4)

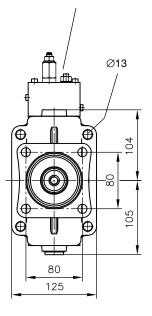
Type V60N-110

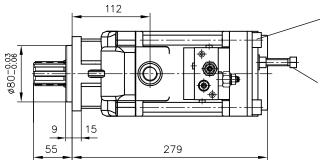
Coding **SU** Spline shaft SAE-C14T-12/24 DP


Illustration
clock wise rotation
direction
(facing the shaft end)


Spline sha (similar to


Coding **DU**Spline shaft 8x32x35
(similar to DIN ISO 14)



Controller see sect. 4.2

Max. torque 150 Nm (4x tie rod M14x190)

Stroke limitation (ΔV_q approx. 5 cm³/rev.)

- Mounting kit is scope of delivery with the intake acc.to sect. 4.3 (part No. 7993355). It consists of:
 - 4x skt.-head screw M8x16-8.8
 - O-ring 44.2x3 NBR 70 Sh
 - 2 brackets

Ports DIN ISO 228/1 (BSPP):

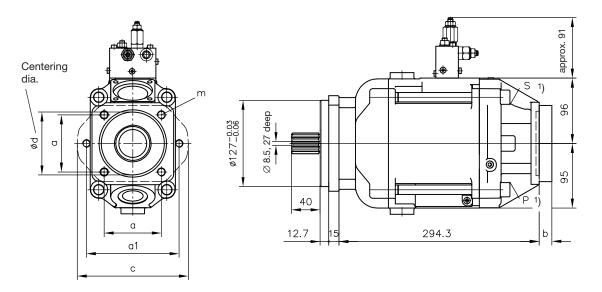
P = Pressure outlet G 1

S = Flange, suction port

D = Case drain G 3/4

Coding **UNF**

ports conforming SAE J 514:


P = 1 5/16-12 UN-2B

S = Flange, suction port

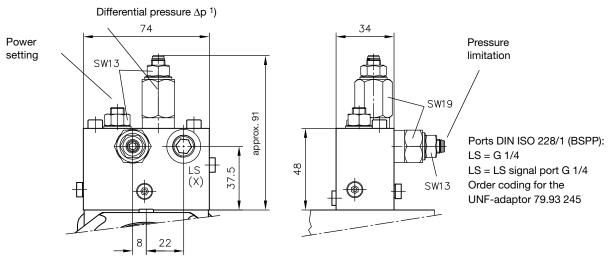
D = 1 1/16-12 UN-2B

LS = G 1/4 (DIN ISO 228/1(BSPP)) with adaptor for 7/16-20 (SAE-4)

Version with thru-shaft

Order example: V60N-110 RSUN-2-0-01/LLSN-350- SAE-B/4 -A00/76

Available flange design incl. coupling


Coding	Description	Suited for spline shaft	а	a1	b	С	Ød	m
- SAE-A	Flange SAE-A	9T-16/32 DP	84	146.4	25	150	82.55	4xM10, 15 deep
- SAE-B/2	Flange SAE-B-2-hole	13T-16/32 DP	-	146	20	165	101.6	2xM12
- SAE-B/4	Flange SAE-B-4-hole	13T-16/32 DP	89.8	-	-	-	101.6	4xM12, 15 deep
- SAE-C/4	Flange SAE-C-4-hole	14T-12/24 DP	114.5	-	32	213	127	4xM12, 15 deep
- SAE-C/2	Flange SAE-C-2-hole	14T-12/24 DP	-	181	32	213	127	2xM16

Note: An additional support has to be provided for pump combinations

¹⁾ With clock wise rotation

4.2 Controller

Type LSN, LN, N and LLSN

Pressure adjustment

	Pressure range (bar)	Δp (bar) /rev.		
Pressure limitation	50 400	100		
Differential pressure Δp 1)	18 45	10		

SW = a/f

4.3 Suction intakes

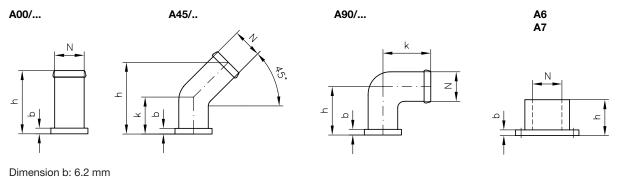
Order example: V60N - 090 R DU N - 1 - 0 - 01/LSN - 350 - A00/76

Nom. size

Geometric shape

Table 3: Suction intakes

Nom. size	Q _{max} (I/min)	Straight	45°		90°		Thread
(N)		A00/	A45/		A90/		A.
		h	h	k	h	k	h
38 (1 1/2") ²)	75	65	-	-	-	-	-
42	90	-	85	40	-	-	-
50 (2")	125	65	96	40	53	84	-
64 (2 1/2")	190	90	96	40	109	129	-
76 (3")	250	106	106	40	-	-	-
6 (G 1 1/4)	90	-	-	-	-	-	21
7 (G 1 1/2)	125	-	-	-	-	-	28.5


²) Attention:

Should be used for reduced flow only!

Mounting kit is scope of delivery with the intake acc.to sect. 4.3 (part No. 7993355). It consists of:

- 4x skt.-head screw M8x16-8.8
- O-ring 44.2x3 NBR 70 Sh
- 2 brackets

G = BSPP

¹⁾ Applies only to controlles type LSN and LLSN; pre-set at HAWE at 28 bar